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 Comments and questions welcome.  To Peter Tulip, Stop 61A, Federal Reserve Board,1

 Washington DC 20551.  Email: ptulip@frb.gov
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Polynomial Adjustment Costs in FRB/US

Flint Brayton, Morris Davis and Peter Tulip1

May 2000

The adjustment dynamics of most major nonfinancial variables in FRB/US are based on a

framework of polynomial adjustment costs, or PAC.  This is a model, developed by

Tinsley (1993), in which decisions are driven by expectations but constrained by

adjustment costs.  This note describes what PAC is, how it is derived and how it is

estimated and implemented within FRB/US.

Description 

The PAC model can be presented in different ways, depending on the purpose.  A form

that is simple to interpret is the “decision rule”:

where y is the dependent variable,  represents its desired, target or equilibrium value

(we use the terms interchangeably),  is the first difference operator and  represents

expectations based on information available at t-1.  Thus the equation decomposes the

determinants of   into three elements: the lagged gap between the level of y and its

equilibrium value, lagged values of , and expected future values of .  The 

coefficients on leads of  are transformations of the  (k = 0, ..., m-1) coefficients on

lags of y, as discussed below.   In FRB/US notation, the level of the target, y*, is

represented by a variable in which the first letter is Q.  The expected sum of future values

of  is represented by a variable in which the first letter is Z.

This approach resembles FRB/US’s precursor, MPS, and similar models in that it
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combines short-term dynamics with long-term error correction mechanisms.  The close fit

to the data associated with this approach is maintained.  The main difference from simple

error-correction models is the inclusion of terms reflecting expected growth in the target. 

In traditional error-correction models, lagged explanatory variables often represent a

mixture of expectations and previous shocks to which agents are gradually adjusting.  This

ambiguity makes it difficult to address important questions, such as the effect of changes

in expectations.  In contrast, the PAC framework provides a means of separately

identifying the effects of expectations and adjustment costs.  

Derivation 

Several observationally-equivalent cost functions can be used to derive the PAC

specification.  One such cost function, 

penalizes both deviations of a variable y from its desired value and changes in m time

derivatives of the variable y.  In this and following equations, future-dated variables should

be interpreted as expected values even when the expectations operator has been

suppressed.   is a discount factor on future penalties, assumed to equal 0.98, and

 are cost parameters. 

Many other researchers have worked with cost equations similar to (2), but

restricting m to equal 1.  For examples and discussion see Kennan (1979), Rotemberg

(1982) and Nickell (1985).  The extra terms permitted by PAC imply inclusion of lagged

changes in the dependent variable: the expression in (1).  Their inclusion

provides a better fit to the data, particularly in regard to short-term dynamics.  Many

equations in FRB/US have values of m between 2 and 4.

The Appendix shows how the decision rule (1) is derived from the cost function

(2).   In brief, minimization of costs yields the first-order condition,
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where L and F are the lag and lead operators, respectively; .  Equation (3) can be

written more compactly as   

where A is a polynomial in the lag and lead operators of order m; that is,

 and ; and c is a

constant.  After some algebra, this yields (1).  The coefficients in the decision rule (1) are

transformations of the  parameters in A (which in turn are transformations of  and the b

parameters in the cost equation (2)).   Specifically,

 ; 

for k = 1, 2, ... , m-1

            

and, for j = 1, 2, ... 

where the matrix G is also a function of the discount factor  and the  adjustment

coefficients.  Its structure is provided in equation (A. 38) of the Appendix.  Pre and post

multiplication by the selection vector  selects the top left element of .
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Estimation 

The first step in the estimation of a PAC equation is construction of a model determining

the target, .   This typically consists of a stationary component,  and a trending

component, .   That is,

The coefficient  on the stationary component is estimated within the PAC equation, as

discussed below.   In contrast, the trending component is specified before the PAC

equation is estimated as a function of one or more variables, with coefficients that are

constrained in accord with theory or are estimated from cointegrating equations.   

In the second step, forecasting models for the components of  are estimated. 

Specifically, suppose that  is an element of the information vector z, which also includes

other variables useful for forecasting .   A vector autoregression (VAR) can then be

used to predict future levels of  z as a linear combination of past levels.  That is,

Forecasts into the indefinite future are obtained by repeated application of this equation:

Decompose z  into a vector  used for forecasting the stationary component of

the target and a vector  used for forecasting the trending component of the target 

.  Substituting the VAR forecasts for expected changes in the target in equation (1)

and converting the infinite leads into a finite form gives an equation that is a function of

observable variables:
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ĥ1

ak ĥ0 ĥ1
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the coefficient  represents the contribution of stationary elements of the target.  The

vectors  and are constructed from the VAR coefficients H, the discount factor  and

the  adjustment coefficients, as outlined in equations (A. 74) and (A. 82) of the

Appendix.    and  differ because   reflects contributions from both the lagged

level and expected values of the stationary component of the target whereas  only

reflects contributions from expected movements -- the lagged level of the trending

component being separately identified.

PAC imposes numerous restrictions on equation (8).  These reflect assumptions

that lead coefficients are reparameterizations of the lag coefficients (in turn reflecting the

symmetry with which the past and the discounted future enter (4)) and that the elements of

 and  affect y symmetrically, through their effect on  .  FRB/US equations often

impose additional restrictions reflecting assumptions about homogeneity and

cointegration.    

A simple method of estimating the restricted equation is through an iterative OLS

procedure.  Given values of the VAR coefficients H, the discount factor , and starting

values for  ( k = 0 to m-1), initial estimates of  and can be constructed (  and

).  Using these, we can estimate the following linear regression

This provides an estimate of  and revised estimates of the  coefficients.   and  

can then be recalculated and another iteration performed.  Typically, parameter estimates

converge in a few iterations.  

The restrictions imposed by PAC can be jointly tested by comparing the residuals

from (9) with those from an unrestricted regression.  The unrestricted regression

resembles equation (8) without restrictions on the h vectors.  The order of adjustment

costs m is determined empirically by testing to see how many lags of the dependent

variable are significant, and then including all lags up through the last significant one. 
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In practice, not all the series modeled in FRB/US exactly fit within the PAC

framework, involving some modifications to the specification above.  For example, the

presence of agents who do not optimize in the forward-looking manner assumed by PAC

(perhaps because of liquidity constraints or bounded rationality) is reflected in the

inclusion of current income in the consumption equation and cash-flow in the investment

equation.  Temporary responses to variables outside the target, (for example payroll taxes

and the minimum wage in the wage equation) and different speeds of adjustment to

different elements of the target (for example, imports and energy costs in the price

equation)  is reflected in their separate inclusion as regressors.   

Model-consistent expectations

Given a set of VAR-based expectations, the model can be estimated as described above

and then used for forecasting and policy simulations.  The simulations will normally yield

different values for the target variables than implied by the VARs.  In other words, the

information individuals use in forming their expectations is assumed to be limited to the

information vector z and does not encompass predictions of the model.

For some applications, such as permanent changes in policy rules, VAR

expectations have the undesirable feature that persistent expectational errors are made. 

To avoid this, policy simulations in FRB/US often assume model-consistent expectations. 

To simulate the model with model-consistent expectations, equation (9) is initially

estimated using VAR-based expectations, as discussed above.   This generates an initial

set of coefficients, VAR-based expectations of   and forecasts of the other endogenous

variables of the model.   As explained below, new expectations of can then be

computed.  Substituting these for the previous set of expectations, while retaining the ,

 and  coefficients from the initial estimation (which remain constant through successive

iterations), new forecasts and new expectations can then be computed.   Iterations

continue until expectations coincide with forecasts.  

Specifically, let  represent the contribution from expected movements in the
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target.     equals the term  in the decision rule (1) and the term

in the estimation equations (8) and (9)  under VAR-expectations.  To

represent  as an expression containing a finite number of leads, begin by assuming m

terminal conditions for   where T is large.  (These could be arbitrary, though

it is more efficient to assume a balanced growth path consistent with the exogenous

variables of the model.)  Coupled with a projected path of  from the present to the

terminal state, intermediate values of  Z  can then be calculated recursively from the

terminal state back to period  t.  The formula for calculating this, as explained at equation

(A. 90) of the Appendix, is:

An initial estimate of    will then imply new forecasts of the model’s endogenous

variables.  From these, a new path of  can be forecast, from which a new estimate of 

  can be obtained.  This process iterates until the expected growth of the target

coincides with the forecast.  

Having obtained one set of model-consistent projections, the exogenous variables

of the model, such as policy parameters, can then be changed.  Repetition of the above

procedure leads to a new set of model-consistent projections.  These can be compared

with the initial set to assess the consequences of the policy change.
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(A. 11)

(A. 12)

(A. 13)

(A. 14)

Algebraic Appendix

Tinsley (1993) concisely presents the algebra of PAC.  This appendix provides a more

detailed presentation.

 

Derivation of the decision rule

Consider the cost function (2):

Differentiating with respect to  yields a first order condition:

Take the derivatives of the second part of equation (A. 12) piece by piece. For k=1,

and for k=2
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(A. 15)

(A. 16)

(A. 17)

(A. 18)

(A. 19)

Continuing like this, we can derive the general expression for the derivative of the 

term, which is

Substituting (A. 15) into (A. 12) gives us the first order condition, equation (3): 

which can be rewritten as

The expression in square brackets is a “self-reciprocal” polynomial, that is, the coefficient

on  is the same as the coefficient on .   To see this, first consider the expression

 for  k = 1 

The coefficients on L and  are identical (they both equal ).  Next, consider k = 2

The coefficients on  and  are identical (they both equal ), as are the coefficients

on L and  (they equal ).  In a similar fashion, it is possible to show for all
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(A. 20)

(A. 21)

(A. 22)

(A. 23)

(A. 24)

 that  is a self-reciprocal polynomial.  Because

 is a summation over self-reciprocal polynomials, and a

summation over symmetric terms produces symmetric  terms, it follows that

 is a self-reciprocal polynomial as well.  The addition of a constant

1 does not affect the coefficients on lags or leads, so   is also

self-reciprocal, as claimed.  It can be written explicitly in self-reciprocal form as:

where 

Tinsley (1993) shows that a self-reciprocal polynomial with m lags and discounted leads

can be factored as

where

and for i = 0, 1, ... , m

We can verify that this is true for a polynomial of degree two by expanding

when .  In this case,
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(A. 25)

(A. 26)

(A. 27)

(A. 28)

(A. 29)

Comparing this with (A. 21) indicates

consistent with (A. 24).

Given the results in (A. 22) to (A. 24),  we can factor equation (A. 17) as

The relationship between the cost parameters  and the polynomial

coefficients can be seen by expanding  for m = 2. 

Using equations (A. 18) and (A. 19), gives

A comparison of equations (A. 21), (A. 24) and (A. 28) gives us
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(A. 30)

(A. 31)

(A. 32)

(A. 33)

Given , it is straightforward to obtain the cost parameters  from either

 or .  However, expressions for  are non-linear and

complicated.    

A first step in simplifying (A. 27) involves making the polynomial “monic”, so the constant

term is normalized to 1.  Dividing both sides of (A. 27) by  gives a new polynomial A,

with coefficients :

where

Let c represent the arbitrary constant, .  This can be fixed by assuming that the agent

expects to reach the target path in a steady state; so that, when L = F = 1, then  y = y*.  

Then, 

which gives us equation (4), 

This is an m-order difference equation, which can be simplified by expressing it as a first
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(A. 34)

(A. 35)

(A. 36)

(A. 37)

order difference equation in matrix form.  As shorthand, let .  Then the left

hand side of (A. 33) can be written as

Put future terms in matrix form, with names of corresponding vectors written in bold

underneath

Equating this with the right hand side of (A. 33) gives us

Because  is the first element of the vector , this equation can be re-expressed as a

first-order difference equation.  Construct an m-vector of zero’s, with 1 in the first row.

That is,  Then

To solve this, we first find an expression for .  The following system has (A. 37) as its

first equation, with other elements of  being explained by identities. Names of
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(A. 38)

(A. 39)

corresponding matrices are written in bold underneath.

G is an mxm matrix comprising the vector  in the first row, an (m-1)x1 vector of zeros

in the rest of the last column and an identity matrix,  of rank m-1 in the lower left

corner.  Using (A. 38) to substitute for successive leads of , (A. 37) can be rewritten as

an infinite forward sum: 

where .   (A. 39) provides a useful shorthand to which we return, when we

discuss estimation below.  But to derive the decision rule, polynomial notation is more

convenient.  First, to put the expression back in terms of y and y*, we can substitute back

for  and :
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(A. 40)

(A. 41)

(A. 42)

(A. 43)

This replaces the forward operator in (A. 33) with an infinite forward sum.  

To put (A. 40) in error correction form involves expressing both sides as a level term and

a weighted sum of differences.  The left hand side can be reexpressed as

where   

and            for k = 1, 2, ... , m-1

To verify this, expand A(L) with m = 3:

with  and as claimed.  

Substituting (A. 41)  into (A. 40) gives
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(A. 45)

(A. 46)

(A. 47)

The next step is the decomposition of the right hand side into levels and changes.  I first

show this in scalar terms, which seems simpler and provides a representation that can be

interpreted as a decision rule.  I then present it in matrix algebra, which is more suited to

estimation.

As pre and post multiplication by the selection vector  picks out the top left

hand element of , the coefficients on future values of are scalars.  So, the right hand

side of (A. 43) can be represented as a polynomial in the forward operator:

 is an infinite order polynomial, with typical element

If m = 2, as is the case with many FRB/US equations, then

and

Substitute (A. 44) into (A. 43).  Then add and subtract  and rearrange to make

 a function of last period’s ‘disequilibrium’ : 
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(A. 48)

(A. 49)

(A. 50)

(A. 51)

(A. 52)

Group and difference the coefficients on y* by defining 

where

with 

and, for j = 1, 2, ... 

To verify this, expand  as



D̃(F)y (

t & A(1)y (

t&1

' d̃0%d̃1F%d̃2F
2
%d̃3F

3
% ... y (

t & A(1)y (

t&1 % A(1) y (

t & A(1)y (

t

' A(1) y (

t & A(1) y (

t % d̃0y
(

t % d̃1F%d̃2F
2
%d̃3F

3
% ... y (

t

' A(1) y (

t & A(1)&d̃0 y (

t % d̃1y
(

t%1 % d̃2F
2
%d̃3F

3
% ... y (

t

' A(1) y (

t % A(1)&d̃0 y (

t%1 & A(1)&d̃0&d̃1 y (

t%1% d̃2F
2
%d̃3F

3
% ... y (

t

' A(1) y (

t %A(1)&d̃0 y (

t%1 % A(1)&d̃0&d̃1 y (

t%2&A(1)&d̃0&d̃1&d̃2 y (

t%2 % d̃3F
3
%...

yt ' A(1)(y (

t&1&yt&1) & A ((L) yt&1 % D(F) y (

t .

yt ' a0(y
(

t&1&yt&1) % j
m&1

k'1
ak yt&k % Et&1 j

4

j'0
dj y (

t%j

y (

a0 ' d0 ' A(1) ' 1% 1%...% m ' 1%j
m

j'1
j

j
m&1

k'1
ak yt&k ' &A ((L) yt&1 ak ' &

(

k' &j
m

j'k%1
j

4

dj ' A(1) & j
j&1

i'0

d̃i

' A(1) & A(1)A( )j
j&1

i'0

)G i
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(A. 53)

(A. 54)

(A. 55)

From continuing the expansion of equation (A. 53) in this manner the coefficients on lags

of can be seen to match (A. 52).

Substituting (A. 49) into (A. 48) then yields

which can be rewritten as the decision rule (1)

Where, as shown above,

 

for k = 1, 2, ... , m       where    

and, for j = 1, 2, ... 

 



ft ' ft & ft&1 % ft&1

' ft % ft&1

ft%1 ' ft%1 % ft

' ft%1 % ft % ft&1

j
4

i'0

G ift%i

' G 0ft % G 1ft%1 % ... % G 4ft%4

' G 0 ft% ft&1 % G 1 ft%1% ft% ft&1 % ... % G 4

j
4

j'0

ft%j% ft&1

' j
4

j'0

G jft&1 % j
4

j'0

G j ft % j
4

j'1

G j ft%1 % ... % j
4

j'k

G j ft%k % ...

' [I&G]&1ft&1 % [I&G]&1 ft % [I&G]&1G 1 ft%1 %...% [I&G]&1G k ft%k %...

' [I&G]&1ft&1 % j
4

k'0
[I&G]&1G k ft%k

ft%i ' j
i

j'0

ft%j % ft&1
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(A. 56)

(A. 57)

A matrix representation

(A. 54) provides an equation that is simple to interpret, but cannot be estimated.  One

reason for this is that expected values of the target y* are not observable.  Another is that

(A. 54) contains an infinite number of coefficients (albeit reflecting m+n underlying

parameters).  We can address both these issues after expressing the forward leads in

matrix algebra.  

Return to (A. 39), which is an infinite sum of leads of the vector f.   Each lead of  f

can be decomposed into the lagged level and a sum of changes.  That is,

.  To see this, add and subtract lagged levels from the right hand

side:

And so on.  The weighted summation of leads of  f can then be expressed as:



xt '
)

m [I&G]&1ft&1 %
)

m j
4

k'0

[I&G]&1G k ft%k

ft ' mcy (

t & mcy (

t&1

' mc y (

t

yt%A(1) yt&1&A ((L) yt&1' c )

m[I&G]&1
my (

t&1 % c )

mj
4

k'0
[I&G]&1G k

m y (

t%k

A(1) ' c )

m[I&G]&1
m

yt%A(1) yt&1&A ((L) yt&1' A(1)y (

t&1 % c )

mj
4

k'0

[I&G]&1G k
m y (

t%k

' A(1)y (

t&1 % Zt

j
4

j'k

G j
' [I&G]&1G k G 0

' I

ft ' mcy (

t

xt

y' y (
'0

Zt
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(A. 58)

(A. 59)

(A. 60)

(A. 61)

(A. 62)

where the second last line uses the formula for the sum of an infinite series

 with .  Substituting (A. 57) into (A. 39) gives:

From the definition of   we have:

Substituting these into (A. 58) and substituting (A. 41) for  gives an expression in terms

of levels and differences of y*:

In a steady state, y = y* and .  This gives

Substituting this into (A. 60) gives:

where  represents the contribution from the expected growth of the target.  We return

to this formulation in considering model-consistent expectations, below.  Rearranging

gives:



yt ' A(1) y (

t&1 & yt&1 % A ((L) yt&1 % Zt

y (

t '
)

n zt

zt%1 ' Hzt

zt%2 ' Hzt%1 ' H(Hzt) ' H 2zt

y (
' y 1(

y (

t zt

)

n
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(A. 63)

(A. 64)

(A. 65)

(A. 66)

This differs from (A. 54) in that a matrix expression, Z,  is substituted for the forward

polynomial D, which was defined recursively.  

VAR Expectations

Suppose that the target, y* can be identified outside the PAC equation.  In the

terminology used earlier, this implies that there  is no “stationary component” of the

target, so .  Also suppose that expectations of  y* are generated as if by a vector-

auto-regression (VAR).  Let z  be an n-vector of variables comprising the determinants of

expectations of the target y*.   Define as the first element of , so:

where  is a selection vector comprised of 1 as the first element then n-1 zeros.  Then,

define H as the n x n matrix of coefficients generating one-period ahead forecasts of z. 

That is:

If z contains more than one lag of a variable the corresponding row of H will contain zeros

except for a 1 on the relevant lag.  H is often also restricted to be consistent with

assumptions about homogeneity and orders of integration.  

Future levels of z are obtained by repeated substitution:



zt%i ' H izt

zt%i ' H izt & H i&1zt

' H& I H i&1zt

zt%i ' H& I H i&1 Hzt&1

' H& I H i zt&1

' H i H& I zt&1

Zt ' c )

m j
4

k'0
[Im&G]&1G k

m y (

t%k

Zt ' c )

m j
4

k'0

[Im&G]&1G k
m

)

n zt%k

Zt
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(A. 67)

(A. 68)

(A. 69)

(A. 70)

(A. 71)

more generally,

And, to obtain differences:

This can be lagged an extra period, to put it in terms of predetermined variables:

An estimation equation

Let  represent the contribution from the expected growth of the target, as in (A. 62). 

That is,

As y* is an element of the information vector z, (see equation (A. 64)), this can be re-

expressed in terms of future levels of z :

and, using (A. 69), in terms of lagged levels of z : 



Zt ' c )

m j
4

k'0

[Im&G]&1G k
m

)

n H k H& In zt&1

' h ) zt&1

h' c )

m j
4

k'0

[Im&G]&1G k
m

)

n H k H& In

)

' c H& In
)

j
4

k'0
[Im&G]&1G k

m
)

n H k

)

m

' c H )
& In j

4

k'0
(H ))k

n
)

m (G ))k [Im&G]&1 )

m

h )

vec(h)'h

vec(ABC) ' (C )¡A)vec(B)
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(A. 72)

(A. 73)

 is a 1 x n row vector.  Its transpose, an n x 1 column vector, is

This can be simplified by use of column stacks.  One property of column stacks is that the

column stack of a column vector equals the vector itself.  So .  Another is that

the column stack of a product of three matrices is .  Repeated

application of these properties gives:



h ' [vec(h)]

' vec c H )
& In j

4

k'0

(H ))k
n

)

m (G ))k [Im&G]&1 )

m

' c )

m [Im&G]&1 ¡ H )
& In vec j

4

k'0

(H ))k
n

)

m (G ))k

' c )

m [Im&G]&1 ¡ H )
& In j

4

k'0

G k¡(H ))k vec n
)

m

' c )

m [Im&G]&1 ¡ H )
& In j

4

k'0

G¡H ) k
m¡ n

' c )

m [Im&G]&1 ¡ H )
& In Inm & G¡H ) &1

m¡ n

yt ' A(1) y (

t&1 & yt&1 % A ((L) yt&1 % h )zt&1
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(A. 74)

(A. 75)

This represents the infinite sums of the H and G matrices as a finite expression that can be

calculated.  Substituting (A. 71) and (A. 61) into (A. 60) and rearranging gives:

where h is constructed as in (A. 74).  As discussed in the text, this equation can be

estimated both in restricted form (with the restrictions implied by the construction of the G

and H matrices) and as a simple linear regression.

Alternative specifications of the target

The previous discussion has assumed the target, y* is a known scalar.  More usually, the

target will be a linear combination of several variables, with weights that need to be

estimated.  For trending variables, it is possible to estimate these weights from a static

regression - the first step in the Engle-Granger 2-step procedure.  These estimates are

inefficient, but super-consistent.  This approach is intuitive, simple to program and

facilitates the imposition of cross-equation restrictions.  For stationary variables, 2-stage

estimation is no longer super-consistent.  



y 1(

y 0(

y (
' y 0(

% y 1(

h )zt&1 ' h )

0z 0
t&1 % h )

1z 1
t&1

m n

m
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In FRB/US, targets commonly comprise a trending component, denoted ,

which has a coefficient of 1 and contains elements with weights that are constrained or

estimated outside the PAC equation and a  stationary component, denoted  with a

coefficient vector  that is estimated within the PAC equation.   That is,

.  Similarly, the VAR forecasts above can be decomposed as

.   We separately identify the lagged level of the trending

component as a variable beginning with a “Q”, expected values of the trending component

as a variable beginning with a “Z” and combine lagged and expected values of the

stationary component as one variable beginning with a “Z”.  The algebra and computer

code for these transformations is set out below.

Alternative computer code for the h vector

FRB/US codes expectations of the target in three different ways.  Equation  (A. 74)

applies when the VAR is estimated with the level of y* as the dependent variable, as in (A.

64).  Then the vector h is coded as the vector PV_COF in the file get_pv as follows:

PV_COF = SUMA1*SUMAB*W2*W1_DL*KRON(IG,IH)

where W2 =  INVERSE{ EYENM-KRON[MAT_G,TRANSPOSE(MAT_H) ] }

and   W1_DL =  KRON{ TRANSPOSE(IG)*INVERSE(EYEM-MAT_G),      

 TRANSPOSE(MAT_H)- EYEN }  

SUMA1 = A(1) and SUMAB = A( ) are scalars, whose product is c

IG and IH correspond to the selection vectors  and

EYEN, EYEM and EYENM are identity matrices of order n, m and nxm respectively

MAT_G and MAT_H correspond to the matrixes G and H.

Notational correspondences are close but inexact.  For example, the order of rows

in MAT_G and IG is reversed in G and   and elements of MAT_G have the opposite

sign to those in G.



y (

t '
)

n zt

y (

t%k '
)

n zt%k '
)

n H k%1zt&1

Z 1
t ' c )

m j
4

k'0
[Im&G]&1G k

m
)

n H k%1 zt&1

' h 1)

zt&1

h 1)

' c )

m [Im&G]&1 ¡ H ) Inm & G¡H ) &1
m¡ n

y (

y (

In
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(A. 76)

(A. 77)

(A. 78)

(A. 79)

In FRB/US it is common to impose the restriction that the trending component of

the target is integrated of order 1.  In such cases, the VAR is estimated with  as the

dependent variable instead of  .  This specification facilitates the imposition of other

restrictions (for example, inflation neutrality) and could make inference easier (though the

VAR’s are not used for this purpose).  Differencing the target involves replacing (A. 64)

with:

Using (A. 65) and (A. 67), which are unchanged, this implies:

Substituting this into (A. 70) implies a modified form of (A. 72)

which differs from (A. 72) through the disappearance of .  The same steps as above

gives a new version of  (A. 74): 

and W1_DL in the computer code is replaced with:



xt '
)

m j
4

i'0

G i ft%i

A(L)yt '
)

m j
4

i'0

G i
mc y 0(

t%i

y 0(
t%i '

)

nz
0
t%i '

)

nH
i%1z 0

t&1

y 0( z 0
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(A. 81)

(A. 82)

W1_DD =  KRON(TRANSPOSE(IG)*INVERSE(EYEM-MAT_G),

TRANSPOSE(MAT_H) )  

Another variation is to combine in one term the present value of expected values of the

target (in FRB/US notation, a “Z” variable), with its lagged level (a “Q” variable).  This is

a common approach for coding of stationary contributions to the target.  It is also

common to drop the restriction that the elasticity of y with respect to this component of

the target is one.  Supposing the coefficient on the stationary component of the target is  

means rewriting (A. 39) as:

Substituting the definitions of x and  f into this gives:

 Letting be the first element of a vector  and using this in a VAR as above implies

substituting this in, then using the same steps as above gives



A(L)yt ' c )

m j
4

i'0
G i

m
)

n H i%1 z 0
t&1

' c j
4

i'0

G i
m

)

n H i%1

)

m

)

z 0
t&1

' c j
4

i'0
H )H i)

n
)

m G i )

m

)

z 0
t&1

' c vec H )

j
4

i'0
H i)

n
)

m G i )

m

)

z 0
t&1

' c )

m ¡ H ) vec j
4

i'0

H i)

n
)

m G i )

)

z 0
t&1

' c )

m ¡ H )

j
4

i'0

vec H i)

n
)

m G i )

)

z 0
t&1

' c )

m ¡ H )

j
4

i'0
G i¡H i) vec n

)

m

)

z 0
t&1

' c )

m ¡ H ) Inm & G¡H ) &1
m¡ n

)

z 0
t&1

' h 0)

z 0
t&1

A(L)yt ' A(1)y (

t&1 % Zt
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(A. 84)

(A. 86)

and W1_DL in the computer code is replaced with:

  W1_LL =   KRON( TRANSPOSE(IG), TRANSPOSE(MAT_H) ) 

Model consistent expectations

To find an expected path for the target, y* that is consistent with model forecasts, first

substitute (A. 41) into  (A. 62):



A( F)A(L)yt ' A( F)A(1)y (

t&1 % A( F)Zt

A(1)A( )y (

t ' A( F)A(1)y (

t&1 % A( F)Zt

A( F)Zt ' A(1) A( )y (

t & A( F)y (

t&1

Zt % j
m

i'1
i

iZt%i ' A(1) 1 % j
m

i'1
i

i y (

t & y (

t&1 % j
m

i'1
i

iy (

t&1%i

Zt ' j
m

i'1
i

iZt%i % A(1) y (

t % j
m

i'1
i

i y (

t & y (

t&1%i

y (

t%k & y (

t ' y (

t%k & y (

t%k&1 % y (

t%k&1 % ... & y (

t

' j
k

i'0

y (

t%i

A( F)

y (

t%k
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(A. 87)

(A. 88)

(A. 89)

(A. 90)

Multiply though by 

The left hand side can be put in terms of y* by using (A. 32) and (A. 33)

Then rearranging and expanding the polynomials gives

The last term is a weighted sum of higher order differences.  This can be rewritten as a

reweighted sum of first differences.  To see this add and subtract intermediate levels of

:

It follows that



j
m

i'1
i

i y (

t & y (

t&1%i ' 1
10 % 2

2 y (

t & y (

t%1 % 3
3 y (

t & y (

t%2 % 4
4 y (

t & y (

t%3

. % ... % m
m y (

t & y (

t%m&1

' & 2
2 y (

t%1& 3
3 y (

t%1 % y (

t%2 & ... & m
m
j
m&1

k'0
y (

t%k

' & j
m&1

k'1
j
m&1

j'k
j%1

j%1 y (

t%k

Zt ' j
m

i'1
i

iZt%i % A(1) y (

t & j
m&1

k'1
j
m&1

j'k
j%1

j%1 y (

t%k

y (

t%k Zt%j

Zt
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(A. 91)

(A. 92)

Substituting this into (A. 87) gives

As discussed in the text, given   for k = 1, ... T  and  for  j  = T, ... T+m, then

this can be used to solve for . 
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